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An expression is obtained for the electronic decoherence time of the reduced density electronic
matrix in mixed quantum-classical molecular-dynamics simulations. The result is obtained by
assuming that decoherence is dominated by the time dependence of the overlap of
minimum-uncertainty packets and then maximizing the rate with respect to the parameters of the
wave packets. The expression for the decay time involves quantities readily available in
non-Born-Oppenheimer molecular-dynamics simulations, and it is shown to have a reasonable form
when compared with two other formulas for the decay time that have been previously proposed.
© 2005 American Institute of Physics. �DOI: 10.1063/1.1995695�

I. INTRODUCTION

The time-dependent Schrödinger equation describes the
unitary evolution of a pure state, such as the wave function
of the entire universe. Real systems interact with an environ-
ment and are described by a reduced density matrix for the
system’s degrees of freedom, traced over the environment. A
reduced density matrix evolves nonunitarily under the influ-
ence of friction and dissipation, and, in an appropriate basis,
its off-diagonal elements, called coherences, decay to zero;
this is called decoherence. The decoherence rate depends
strongly on the initial conditions and it can be fast—on the
other of the highest natural frequency of the system.1 The
environment that produces decoherence also produces a back
reaction on the system, modifying its evolution.2 The basis in
which decoherence is fastest is called the pointer basis.3 The
density matrix, being Hermitian, may be diagonalized at any
time, but the basis that diagonalizes it changes with time.
After decoherence, though, the density matrix remains diag-
onal in the pointer basis for a given environment.4,5

Although considerable literature has been developed for
decoherence in the limit of weak system-environment cou-
pling, chemical physics is replete with problems where de-
coherence must be understood in the limit of strong system-
bath coupling; electron transfer reactions and exciton transfer
in condensed phases provide two prominent examples.6–8

Electron transport in molecule-based electronics9,10 also in-
volves questions of localization and dissipation that would
naturally be treated by reduced density matrices. There are
many qualitatively different models that one could use for
the environment of the system. The most frequently studied
one is a collection of harmonic oscillators, but recent work
has begun to consider other kinds of baths such as a gas
reservoir of variable density.11 The present article considers
decoherence in yet another kind of system, namely, the elec-
tronic degrees of freedom of a molecule coupled to an envi-
ronment of nuclear degrees of freedom, which must be un-
derstood to develop physical models of electronically

nonadiabatic processes. The question is how rapidly the elec-
tronic density matrix decoheres due to vibrational motion.

Rossky and co-workers12,13 analyzed the problem by
considering the behavior of Gaussian wave packets. Their
treatment attributes the decay of coherences to decaying
overlap of wave packets centered on diverging nuclear tra-
jectories corresponding to propagation in the different elec-
tronic states. The overlap is evaluated under the assumption
that the initial momenta of trajectories in different states are
the same, which is a special case corresponding to initially
degenerate states; the coordinate dispersion of the wave
packet was based on a simple realistic model of a thermal
environment, and the momentum dispersion of the wave
packet was implicit �for a given coordinate dispersion� in the
assumed form of the frozen Gaussian wave packet. The lead-
ing term in the decay of the overlap is second order in the
time. This stimulating treatment raises questions about
whether one can better justify the form and width assumed
for the wave packet, whether one can identify a first-order
contribution to the decay, and whether one can extend the
result to nonthermal environments.

In our own work, we have developed an alternative
approach,14–16 based on the fastest natural time scale of the
system and the need, in a self-consistent treatment including
back reaction, for decoherence to slow down �and eventually
stop� as the nuclear momenta are decreased �eventually to
zero�. Although it has been successful in applications, this
approach is also not completely satisfactory because it con-
tains parameters whose order of magnitude may be estimated
with reasonable confidence, but which are otherwise arbi-
trary.

There is some encouraging consistency between the two
approaches. In particular the fastest-time-scale approach14–16

gives very fast decoherence times �2–34 fs� even for gas-
phase molecules. The Gaussian wave-packet approach, origi-
nally developed for condensed-phase systems,12 has now
been analyzed in terms of intramolecular and intermolecular
contributions, and it has been found that it also gives fast
times13,17 ��4 fs� for decoherence due to intramolecular mo-a�Electronic mail: truhlar@umn.edu
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tion, such that intramolecular motions can have a much
greater effect on the electronic decoherence than polar sol-
vent molecules do.

In the present article we return to the derivation on the
basis of wave packets, and we use the principles developed3

on the basis of environment-induced superselection rules to
remove some of the arbitrariness in the choice of wave-
packet widths. The principles employed are the following:3

�1� The semiclassical limit of a wave function is a sum of
WKB-type trajectories associated with minimum uncer-
tainty wave packets, and the decoherence of the super-
position is faster than the decoherence of the individual
packets.

�2� The pointer basis is the one in which decoherence is
fastest.

Section II presents and discusses the theory and Sec. III
summarizes the conclusions.

II. THEORY

Semiclassical analyses based on perturbation theory18

and on the short-time behavior of wave packets12,13 have
shown that the decoherence of the reduced electronic density
matrix may be associated with two effects: pure dephasing
�which refers to the loss of coherence due to interference
among the phases associated with the various members of
the ensemble of semiclassical trajectories� and decoherence
due to the divergence of the trajectories. In this paper, we
present an analysis of the behavior of the time dependence of
decoherence in terms of the nuclear overlap in semiclassical
trajectories.

The nuclear wave function �� for each electronic state �
is taken to be a one-dimensional minimum-uncertainty wave
packet,

�� =
1

�2���
2�1/4 exp�− �x − x��2/4��

2�exp�− ip�x/�� , �1�

where x and p are the nuclear position and momentum and
x�, p�, and �� are parameters. �At this point, we could factor
out the phase at the center of the wave packet13,19 to explic-
itly see its effect, but we will not do this.� Equation �1� has
the properties �x�=x�, �p�= p�, �x=��, and �x�p=� /2,
where brackets denote an expectation value and �q is the
uncertainty in q.

The overlap for two such packets in different electronic
states � and � is

������� = O�� = N�� exp�− A���exp�− i���� . �2�

where

N�� =	 2����
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2 , �3�
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x�

��
2 � . �5�

Taking the time derivative of Eq. �2� and ignoring the time
dependence of the widths �� and phase ��� gives

Ȯ�� = − O��Ȧ��, �6�

i.e., Ȧ�� is the first-order decay rate constant k�� for the
decay of the nuclear overlap.

Since, in the semiclassical limit, the center of the Gauss-
ian wave packet follows a classical trajectory,19 we make the
approximations ẋ�= p� /m and ṗ�=F�, where m is the
nuclear mass and F� is the nuclear force. This yields

k�� =
�x� − x���p� − p��

2m���
2 + ��

2�
+

2��
2��

2�p� − p���F� − F��
���

2 + ��
2��2 .

�7�

The above analysis is similar to that of Rossky and
co-workers.12,13 In their analyses, however, they assume that
p�= p� and x�=x�, and they find no first-order decay.

Note that the nuclear momentum appears in Eq. �7� in
two different contexts: �1� as a parameter defining the wave
packets in Eq. �1� and �2� in the expression for the time
dependence of the nuclear coordinate. In some limits �e.g.,
that of a quadratic potential where the wave packet follows a
classical trajectory�, these two meanings are equivalent, but
in general they are not.

The time dependence of the widths may be an important
aspect of decoherence. Qualitatively, including the time de-
pendence of the widths would result in �1� another first-order

decay term involving Ṅ��, and �2� additional terms in the

expression for Ȧ�� involving �̇�. The first contribution may
be safely neglected, noting that N��=1 in the limit where
��=��. The second contribution may be neglected if the
effect of ẋ� and ṗ� on the decay rate is more significant than
the effect of �̇�, which is reasonable and which is consistent
with the first principle from the Introduction on which our
derivation is based.

For single-surface semiclassical trajectory dynamics, the
wave-packet parameters x� and p� may be chosen to corre-
spond to the position and momentum of a classical trajectory.
This correspondence is exact if the potential is truncated at
second order.19 An expression for the time dependence of the
width �� may also be developed for quadratic potentials.19

Non-Born-Oppenheimer semiclassical trajectories, in gen-
eral, represent a system in a superposition of electronic
states. One may assign p� for each state � at any instant
along a non-Born-Oppenheimer trajectory to be equal to the
nuclear momentum that the trajectory would have if it ex-
isted in the pure state �. �Special consideration is required
for energetically closed electronic states, but we do not con-
sider this complication here.� Assigning values for x� and ��

is not straightforward for non-Born-Oppenheimer trajecto-
ries. For example, if one sets x� for all � equal to the same
value �say, the position of the semiclassical trajectory�, one
loses the first term in Eq. �7�. By using the principles pre-
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sented in the Introduction and a reasonable set of assump-
tions, we will develop expressions for the parameters x� and
��.

Next, we assume that the widths of the wave packets are
independent of electronic state, and we set ��

2 =s. This re-
duces Eq. �7� to

k�� =
�x� − x���p� − p��

4ms
+

s�p� − p���F� − F��
�2 . �8�

The two terms in Eq. �8� reflect two aspects of the decay of
the overlap: separation of the coordinate centers of states �
and � and dispersion of the nuclear momentum for states �
and �. The relative importance of these contributions is con-
trolled by the width parameter s. When s is large �corre-
sponding to packets delocalized in x and localized in p�, the
decay rate becomes large and is dominated by the instanta-
neous separation of the centers of the wave packets. When s
is small �corresponding to localization in x and delocaliza-
tion in p�, the rate of decoherence is dominated by the dis-
persion of the nuclear momenta. In the limits of s=0 or 	,
the decay rate is infinite, independent of the positions and
momenta of the wave packets. For intermediate cases, both
decay mechanisms are expected to be important.

To obtain a useful formula from Eq. �8�, prescriptions for
x�, p�, F�, and s need to be specified. The initial separation
of the centers of the wave packets in coordinate space D��

=x�−x� defines a choice of basis functions with which to
represent electronic decoherence semiclassically, and D�� is
determined by optimizing the basis, which, according to the
second principle from the Introduction, corresponds to maxi-
mizing the decay rate with respect to D��.

We consider a two-state case where p�
 p� and x�


x�. Optimizing Ȯ�� with respect to D�� gives

�p� − p��
16ms2 D��

2 +
�p� − p���F� − F��

4�2 D�� −
�p� − p��

4ms
= 0,

�9�

whose solutions are �for p��p��

D± = − 2�F� − F��ms2/�2 ± 2	s + �F� − F��2m2s4/�4.

�10�

Note that because s�0, the magnitude of the second term is
always greater than the magnitude of the first term, making
D+�0 and D−
0 for all possible values of the parameters.
We choose the solution where the packet on the lower elec-
tronic state �state � in our example� is advanced in coordi-
nate space relative to the packet on the other electronic state,
i.e., we choose D+ as our solution, giving �using Eq. �8��

k�� =
s�p� − p���F� − F��

2�2

+	�p� − p��2

4m2s
+

�p� − p��2�F� − F��2s2

4�2 . �11�

The first term may be either positive or negative, and its sign
depends on the sign of �F�−F��. The overall rate constant,
however, is always non-negative.

Using the minimum-uncertainty relationship for the un-
certainties in x and p, one can write

s =
�

2

�x

�p
. �12�

We approximate the ratio �x /�p as the ratio of the de Bro-
glie wavelength for the average momentum p̄ to the momen-
tum difference, i.e.,

s =
�

2

h/p̄

�p� − p��
, �13�

where p̄ is defined to be positive. Using the identity �which
arises from the conservation of the sum of kinetic and poten-
tial energies�

�p� − p��p̄ = m�V� − V�� , �14�

where V� is the potential energy of electronic state �, the
width may be written as

s =
�2�

m�V� − V��
. �15�

The rate constant for this choice of the width is

k�� =
�

2

�F� − F��
p̄

+	�p� − p��2�V� − V��
4m�2�2 +

�2

4

�F� − F��2

p̄2 . �16�

Finally, we assume that p�, F�, and V� are readily obtained
from the particulars of the problem being modeled, and Eq.
�16� is the major result of this paper.

Writing Eq. �16� as

k�� = k��
�F + 	�k��

�p�2 + �k��
�F�2, �17�

one may identify the decay as arising from terms involving
the difference in forces and the difference in momenta.

We have previously developed models for introducing
decoherence in non-Born-Oppenheimer trajectories14–16,20

using the following expression for the decay time ��� ����

�k��
−1 �

��� =
�

�V� − V��

1 +

E0

Tnuc
� . �18�

where E0 is a parameter and Tnuc is the nuclear kinetic en-
ergy. In the limit of parallel surfaces, the entire decay rate
arises from the terms involving the difference in momenta,
and the decay time of Eq. �17� may be written in this limit as

���
�p =

2��

�V� − V��
	 p̄

�p� − p��
. �19�

For small p� �such that p̄
 p� /2�, Eqs. �18� and �19� are
equal for E0= �	2�−1�Tnuc
3.4Tnuc. This is in qualitative
agreement with our previously recommended value of E0

=0.1Eh=2.7 eV, which was empirically optimized16 for sev-
eral realistic model systems with kinetic energies on the or-
der of 1 eV.
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Rossky and co-workers12,13,17 obtained good results for
the systems they studied by extracting a first-order rate con-
stant equal to �in one dimension�

��� =
�

����F� − F��
. �20�

In applications of Eq. �20�, a thermal average for the width
was appropriate, and the one used is equivalent to

��� =
�

	12mkT
, �21�

where T is the temperature. To make comparisons with the
other formulas discussed here �which do not incorporate
thermal averaging� more straightforward, we write p0

=	2mkT as a parameter and rewrite Eq. �20� �with the width
of Eq. �21�� as

��� =
	6p0

F� − F�

. �22�

The result in Eq. �22� is approximately equal to that of Eq.
�16� in the limit where p= p�= p� for p0= �0.1p.

III. CONCLUSIONS

An expression for the decay rate of the reduced elec-
tronic density matrix has been derived by analyzing the be-
havior of minimum-uncertainty wave packets and by opti-
mizing parameters of the basis with respect to the decay rate.
The resulting formula �Eq. �16�� is obtained in first order,
may be used for nonthermal systems, and involves quantities
readily computable from semiclassical molecular-dynamics
calculations. The formula was shown to have a reasonable
magnitude and functional form and is inclusive of two other
previously proposed and successfully applied formulas.

The formula presented here for the decay time is directly
applicable in semiclassical electronically nonadiabatic theo-
ries that include decoherence.7–9,13–16,21–30 Similar analyses
may be useful in other contexts as well, for example31–35

where a single nuclear coordinate or vibrational mode is
treated quantum mechanically with other nuclear degrees of
freedom treated classically.
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